Electric field effects on red chlorophylls, beta-carotenes and P700 in cyanobacterial Photosystem I complexes.
نویسندگان
چکیده
We have probed the absorption changes due to an externally applied electric field (Stark effect) of Photosystem I (PSI) core complexes from the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus and Spirulina platensis. The results reveal that the so-called C719 chlorophylls in S. elongatus and S. platensis are characterized by very large polarizability differences between the ground and electronically excited states (with Tr(Deltaalpha) values up to about 1000 A(3) f(-2)) and by moderately high change in permanent dipole moments (with average Deltamu values between 2 and 3 D f(-1)). The C740 chlorophylls in S. platensis and, in particular, the C708 chlorophylls in all three species give rise to smaller Stark shifts, which are, however, still significantly larger than those found before for monomeric chlorophyll. The results confirm the hypothesis that these states originate from strongly coupled chlorophyll a molecules. The absorption and Stark spectra of the beta-carotene molecules are almost identical in all complexes and suggest similar or slightly higher values for Tr(Deltaalpha) and Deltamu than for those of beta-carotene in solution. Oxidation of P700 did not significantly change the Stark response of the carotenes and the red antenna states C719 and C740, but revealed in all PSI complexes changes around 700-705 and 690-693 nm, which we attribute to the change in permanent dipole moments of reduced P700 and the chlorophylls responsible for the strong absorption band at 690 nm with oxidized P700, respectively.
منابع مشابه
Energy transfer and trapping in red-chlorophyll-free photosystem I from Synechococcus WH 7803.
We report for the first time steady-state and time-resolved emission properties of photosystem I (PSI) complexes isolated from the cyanobacterial strain Synechococcus WH 7803. The PSI complexes from this strain display an extremely small fluorescence emission yield at 77 K, which we attribute to the absence of so-called red antenna chlorophylls, chlorophylls with absorption maxima at wavelength...
متن کاملElectric field effects on the chlorophylls, pheophytins, and beta-carotenes in the reaction center of photosystem II.
We present an electric field modulated absorption spectroscopy (Stark effect) study of isolated photosystem II reaction center complexes, including a preparation in which the inactive pheophytin H(B) was exchanged for 13(1)-deoxo-13(1)-hydroxy-pheophytin. The results reveal that the Stark spectrum of the Q(x) and Q(y) transitions of the pheophytins has a second-derivative line shape, indicating...
متن کاملEnergy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus.
Photosystem I of the cyanobacterium Synechococcus elongatus contains two spectral pools of chlorophylls called C-708 and C-719 that absorb at longer wavelengths than the primary electron donor P700. We investigated the relative quantum yields of photochemical charge separation and fluorescence as a function of excitation wavelength and temperature in trimeric and monomeric photosystem I complex...
متن کاملStrategy of Protection of Oxygenic Photosynthesis against Intense Light
The pathways of energy dissipation of excessive absorbed energy in cyanobacteria in comparison with that in higher plants are discussed. Two mechanisms of non-photochemical quenching in cyanobacteria are described. In one case this quenching occurs as light-induced decrease of the fluorescence yield of long-wavelength chlorophylls of the photosystem I trimers induced by inactive reaction center...
متن کاملEnergy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA.
The cyanobacterium Synechococcus PCC 7942 grown under iron starvation assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 CP43' or IsiA complexes. It has previously been shown that PSI of Synechococcus PCC 7942 contains less special long-wavelength ('red') chlorophylls than PSI of most other cyanobacteria. Here we present a comparative analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1554 3 شماره
صفحات -
تاریخ انتشار 2002